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ABSTRACT 

The measurement of miniature components with a micro- or nano-coordinate measuring machine requires a high 
precision contact scanning probe. The elastic mechanism of low stiffness is a major component of the contact scanning 
probe. A new elastic mechanism is analyzed by the theory of elasticity and finite element analysis in this paper. It is to 
realize the probe’s mechanical behavior and stiffness when designing an elastic mechanism for a contact scanning probe. 
The contact scanning probe is composed of a tungsten stylus with a ruby ball tip, a mechanism of floating plate 
suspended by four V-shaped leaf springs, and a 3D optical sensor. The leaf spring experiences elastic deformation when 
a contact force is applied. Uniform stiffness model is analyzed. Simulation and experimental results verify the 
correctness of the analysis. 
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1. INTRODUCTION 
To satisfy all kinds of demands of micro- and nano-scale dimensional metrology, a number of various probes have been 
developed in the last decade1-15. Some of them are contact scanning probes10-15; each main structure normally consists of 
an elastic mechanism and several sensors in order to detect the movement of the probe tip in all directions. The contact 
scanning probe must meets some rigorous requirements: (1) the contact force should be small, normally less than 1 mN, 
(2) the scanning repeatability should be less than 30 nm, (3) the tip ball radius should be small, normally less than 300 
µm, (4) the stiffness should be low, normally less than 1 mN/µm, and symmetrical in all directions, (5) the probe have 
enough scanning range, at least 5 µm 10-15. The larger the scanning range becomes, the more difficult the elastic 
mechanism can achieve.  

The author’s group previously developed a contact scanning probe whose scanning range reaches ±20 µm in all 
directions15. This paper analyzes the elastic mechanism using the theory of elasticity and finite element analysis. The 
uniform stiffness model is verified by the experiment.  

2. THE PROBE PRINCIPLE AND STRUCTURE   
The developed contact scanning probe is composed of a tungsten stylus with a ruby ball tip, an elastic mechanism of 
floating plate suspended by four V-shaped leaf springs, a compact 3D optical sensor based on a micro auto-collimator 
and a miniature Michelson linear interferometer. The structure of this 3D optical sensor is shown in Figure 1; Figure 2 
shows the photo of the probe, Figure 3 shows the elastic mechanism. The stylus is inserted to the floating plate. The 
contact force applied to the stylus tip-ball causes the floating plate to tilt and move as a rigid body motion while the leaf 
springs experience elastic deformations. The tilt of the floating plate is detected by the micro auto-collimator with 
respect to the mirror mounted at the center of the floating plate. The vertical displacement of the plate is detected by the 
miniature Michelson interferometer with respect to the same mirror. With such a configuration the movement of the 
probe tip, due to the contact force, in X, Y and Z directions can be solved by the three sensing signals (θ, φ and Z)15.  
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Figure 1. The structure of the 3D optical sensor              Figure 2. The photo of the probe 

    
Figure 3. The structure of the elastic mechanism. 

3. DESIGN ANALYSIS OF THE ELASTIC MECHANISM 
The main task of the floating plate is to assure the probe a stable rest position and a tilt angle relative to the contact force 
in three orthogonal directions. The shape and dimension of the floating plate, as well as the length, width and thickness 
of the leaf springs, are determined according to the required tip ball movement and contact forces. The trigger force is 
normally required to be less than 1 mN and the stiffness of the probe is less than 1 mN/µm. The dimension of the 
mechanism can be calculated by the finite element method in order to obtain an optimum geometry. Due to its 
symmetrical geometry, the force-motion characterisitics will be automatically symmetrical in the X-Y plane. In order to 
analyze the response of the displacement to the contact force, the mechanical structure shown in Figure 4 is taken into 
account. Mechanical behavior under contact force can be analyzed by theory of elasticity as follows16, 17.  
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Figure 4. Simplified structure of the floating mechanism 
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3.1 Deformation under vertical contact force 
 
When a vertical force (FZ) is applied to the ball tip, all leaf springs will be deflected symmetrically in the Z-direction, as 
shown in Figure 5. Each leaf spring is treated as a slender thin cantilever beam, which slope at both ends should be zero, 
since the leaf springs are fixed on the floating plate. The free body diagrams of the floating plate and the leaf spring are 
shown in Figure 6. The shear force P and the bending moment M are reaction loads from the plate. Due to the 
geometrical symmetry of eight leaf springs, P= (FZ/8). The bending moment in Y direction, M, is unknown and has to be 
found. 

        
Figure 5. Deformation of each leaf spring under contact force in Z            Figure 6. Free body diagrams of the leaf spring. 

 
From the theory of elasticity, the vertical displacement and the slope at free end of leaf spring under each load can be 
summarized in Table 1. The torque T applied to the free end will cause a twisted angle φ  that will be used in the next 
section. 

 
Table 1: Elastic behavior at the leaf spring end under different loads 

 
Load Deflection Slope 

  P 
EI

PL
3

3

1 =δ  
EI

PL
2

2

1 =θ  

  M 
EI

ML
2

2

2 =δ  EI
ML

=2θ  

  T --- 
TL
GJ

φ =  

At the boundary of the leaf spring end the slope must be zero, so that θ1=θ2.  Therefore, M can be found as 
                             2/)(PLM =                                        (1) 
Because the floating plate is treated as a rigid body motion, the total displacement at the leaf spring end (δZ) is the same 
as the tip ball displacement.  

21, δδδ −=Zb                                       (2) 

Substituting δ1, δ2 and M into Eq. (2), we can find the displacement of the tip ball under contact force Fz. For the case of 
eight suspending leaf springs, P=Fz/8, therefore, Eq. (3) is obtained. This derivation is also applicable to any N-leaf 
springs of suspension. A conclusion is also obtained that is: the more the suspension leaf springs the larger the probe 
stiffness in Z-direction. 
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3.2  Deformation under horizontal contact force 

The free body diagram of the floating plate under a contact force of Fy is shown in Figure 7, a is half the width of the 
arrn. Each leaf spring is treated as an elastic beam in rectangular cross section. The leaf spring is transferred a vertical 
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force, a torque and a bending moment from the arm at the same time, since it is not perpendicular with the arm. The 
vertical force on the arm will be directly reacted by the leaf spring; and the torque or bending moment on the arm will be 
not equal to the torque or bending moment on the leaf spring. Based on the geometrical symmetry, the loads reacted on 
the arm from leaf springs 1, 2, 5 and 6 are equal, and loads reacted on the arm from leaf springs 3, 4, 7 and 8 are equal. 
The deformed shape of leaf spring 1 and 3 can be illustrated in Figure 8. There is an angle β between the directions of the 
torque/bending moment and the directions of Fy/Fx. So the torque and bending moment can be decomposed into X 
component and the component along the Y direction. It is noted that the lateral displacement at the free end of the leaf 
spring is negligible as the width tothickness ratio (w/t) is larger than 10. 
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Figure 7. Free body diagram of the floating plate 
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Figure 8. Deformed shape of (upper) spring 1 and (lower) spring 3 

 
According to Figure 8, an equilibrium equation can be listed: 

           ( ) ( )1 1 1 2 2 24 4 4 + 4 4 4y Z X X Z X XF l P r M T P a M T= ⋅ + + ⋅ + +  （4） 

where, 1 1 sinXM M β= ⋅ ， 1 1 cosXT T β= ⋅ ； 2 2 cosXM M β= ⋅ ， 2 2 sinXT T β= ⋅  

 
（5） 
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Let the rotating angle of the probe beθ , the deflection, bend angle and torsion angle of the leaf spring 1 be 1δ , 1ς and 1τ , 

respectively; the deflection, and the bend angle and torsion angle of the leaf spring 3 be 2δ 、 2ς and 2τ , respectively. We 

can obtain16, 17: 
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The probe stylus is inserted into the floating plate; both are treated as a rigid body. So the floating plate’s angle is: 

, /b Y lθ δ=  

Since the free end of the leaf spring and the end of the arm are fixed together, the deflection of the leaf spring 1 and 3 
can be expressed as: 

1 , /b y r lδ δ= ⋅  （9） 

2 , /b y a lδ δ= ⋅       （10）

Now, it is to find 1ς and 1τ . From Figure 9 we can see that the plane 1 1 1'O A B is the overlap between the leaf spring 1 and 

the arm of the floating plate. Plane 1 1 1'O A B is located in the 1 1 1 1'O O A B  plane when the tip ball has not been touched. 

However, Plane 1 1 1'O A B  will be located in the 1 1 1 1'O O C D  plane when the probe has an angle θ  along the Y 

direction (shown in Figure. 10). Because 1 1 1 1' ' 'O A B A⊥ , we have 1 1' = / cosO B a β and 1 1' '= tanO A a β⋅ ; and because

1 1 1 1' '=O A O A  and 1 1 1 1C A AO⊥ , so that 1 1 1 1= tan = tan tanC A AO aθ β θ⋅ ⋅ ⋅ . Also, because 1 1 1 1=C A D B and 1 1 1 1'D B O B⊥ , 
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1= cosτ θ β⋅ . 

 
Figure 9. The overlap between the leaf spring 1 and the arm 
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Figure 10. The deformation of the overlap between the leaf spring 1 and the arm 
 

Similarly, plane 1 1 1'O A B in Figure 11 is the overlap between the leaf spring 3 and the arm of the floating plate. Plane

2 2 2'O A B is located in the 2 2 2 2'O O A B  plane when the tip ball has not been touched. However, Plane 2 2 2'O A B  will be 

located in the 2 2 2 2'O O C D  plane when the probe has an angle θ  along the Y direction (shown in Figure 12). Using 

the same analysis, we can obtain 2 = cosς θ β⋅  and 2 = sinτ θ β⋅ 。 

 
Figure 11. The overlap between the leaf spring 3 and the arm 
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Figure 12. The deformation of the overlap between the leaf spring 3 and the arm 

 

Substituting 1δ , 1ς , 1τ and 2δ , 2ς , 2τ into equation (6) to (8), we can obtain 1ZP , 1M , 1T and 2ZP , 2M , 2T . Furthermore, 

substituting 1ZP , 1M , 1T and 2ZP , 2M , 2T  into equation (5) and (4), we can obtain the stiffness of the V shaped elastic 

mechanism along the Y direction. 
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where
3

12
wtI = ，

3 16( 3.36 )
16 3
wt t

w
= −J ， 2(1 )

EG
ν

=
+ ，w is the width of the leaf spring, t is the thickness of the 

leaf spring’s cross section, and v is the Poisson’s ratio of the leaf spring. 

4. EXAMPLES 
The material propoerties and the dimensions of the probe mechanism are listed in Table 2. Parameters to be used for 
calculation are highlighted in bold. 

Table 2. The components of the probe mechanism. 

Item Specifications 
Leaf springs  

 

Floating plate 

Stylus 

Material: Beryllium-copper alloy, E=130×109 Pa, thickness:0.1 mm,  
width: 2 mm, length: L=13 mm    
Material: aluminum alloy, PaE 10101.7 ×= , thickness:1.5 mm, 
arm length: r=5.5 mm, arm width:2 mm; weight:1.3 g 
Material: tungsten stylus with a ruby ball tip , PaE 111093.1 ×= , length: 
l=10 mm, diameter 0.5 mm 

 
4.1 Analytical results 

 
The stiffness in Z direction ,( / )z z b zK F δ is obtained as 0.943 N/mm. In order to find uniform stiffness in all directions, 
the stylus length (l) is the most convenient one to be adjusted. Let equation (3) be equal to equation (11), the value of l 
can be obtained as 9.6 mm. Then, yK  will be the same as zK  (0.943 N/mm).  
 
4.2 Simulation results 
In order to validate the correctness of the stiffness model, computer simulation is also carried out using ANSYS V12 
(finite element analysis software). The parameters shown in Table 2 are taken in use. The tip’s displacement is shown in 
Figure 13 (a) and 13 (b) when it is applied a 1 mN force in horizontal and in vertical direction respectively, the tip move 
both 0.926 µm, The analytical results are coincided with the simulated results quite well and the differences are less than 
1.8%. Figure 13 (c) is the result when it is applied a 1 mN force in different directions. We can see that the elastic 
mechanism is quite uniform.   

 
(a)  Contacting with a 1 mN force in horizontal 
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(b) Contacting with a 1 mN force in vertical 

 
(c) Contacting with a 1 mN force in different directions 

Figure 13. the tip’s displacement when contacting force is applied 

4.3 Experimental results 
 

A very sensitive force measurement apparatus also has been designed, as shown in Figure 14. A thin copper plate is built 
in to the base. When a small force is applied to its end, a bending angle can be detected by an angular sensor, which is 
made from a miniature angular Michelson interferometer whose two beams are reflected by the same mirror. This force 
sensor has been calibrated by some known weights with very good linearity. In this experiment, the force sensor was 
carried by a linear stage, which displacement was measured by a capacitance sensor. Figure 15 shows the photo of 
experimental setup. The experimental results show the stiffness in Z direction was 0.954 N/mm and in the horizontal 
plane was 0.927 N/mm in average, being quite close to the analytical and simulation results. The difference of less than 
1.7% could be due to the manufacture and assembly errors of the probe. 
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Figure 14. The photo of the measuring contact force               Figure 15. Photo of experimental setup 

5. CONCLUSIONS 
This paper analyzes the elastic mechanism of a contact scanning probe for a micro-CMM. The innovative probe consists 
of a probe stylus; a mechanical floating mechanism with four V-shape leaf springs suspension, and a 3D optical sensor. 
The deformation analysis of the elastic mechanism has been carried out using the elasticity theory. Its uniform stiffness 
model is analyzed. Simulation and experimental results verify the correctness of the analysis. From the uniform stiffness 
model, it is effective to design a probe mechanism of this cross-shape floating plate suspended by four V-shape leaf 
springs with constant stiffness in all directions.  
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